Design of new material solar cell and analysis of efficiency, cost and resource availability

SdDec24-21

Payton Bills, Anders Peterson, Michael Thomas, Drew Jensen, Jonathan Timm, Jacob Steffens **Client/Advisor: Vikram Dalal**

Introduction

<u>Problem</u>: Today's solar cells are made from Silicon, which is a **highly** developed technology that is reaching its theoretical maximum efficiency of ~32%.

Solution: Introduce Cadmium Selenide (CdSe) as a tandem cell with silicon to boost overall efficiency of solar farms while minimizing additional costs.

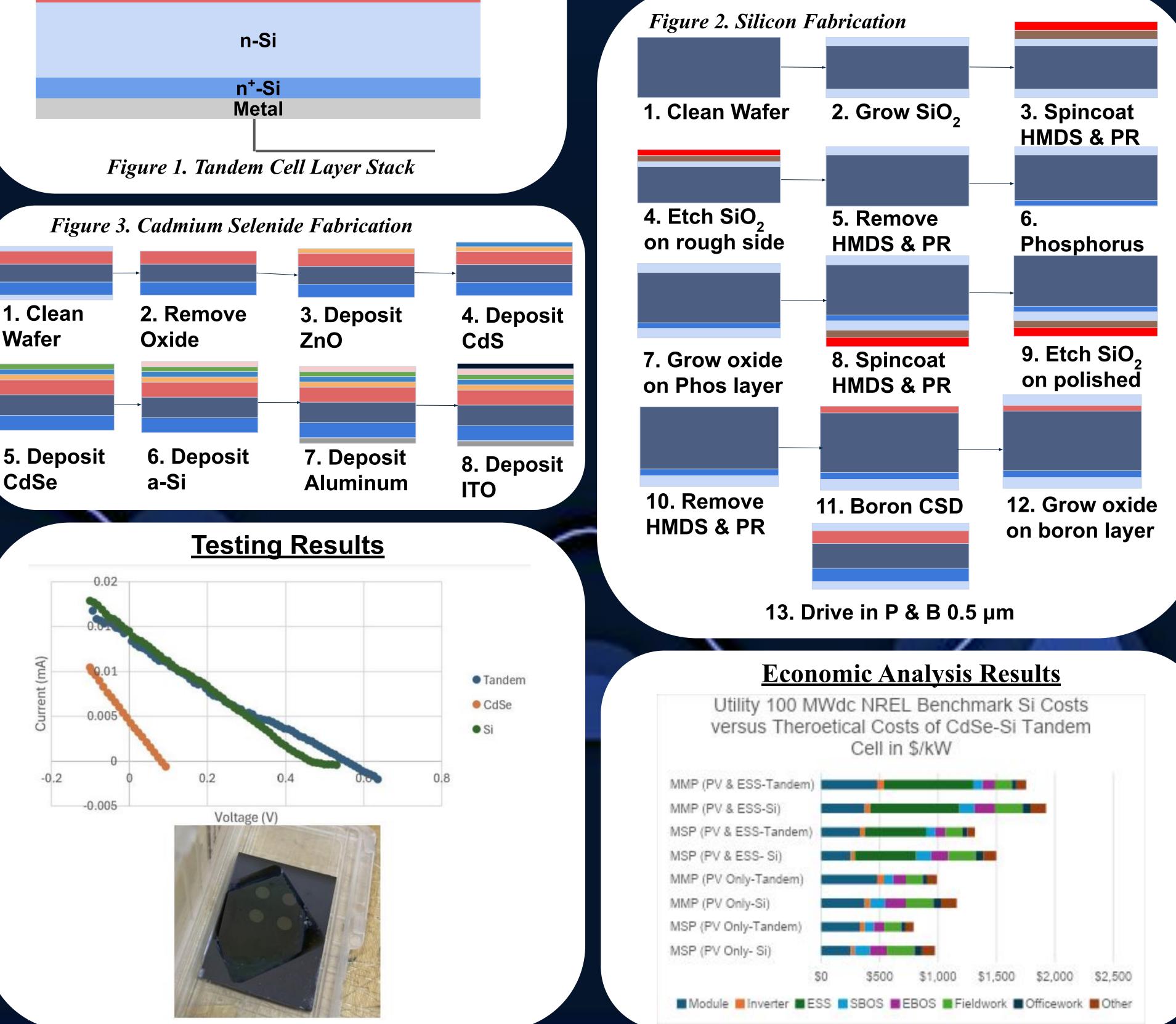
Intended Users & Uses:

Design Requirements

Functional Requirements:

- Fabricate a tandem cell with an open circuit voltage of **at least 1.2V**
- Supporting materials must be **transparent** to allow light to pass 2. through to the lower layers
- Economic analysis must show the utility-scale viability of the 3. design

Constraints: Fabrication processes are limited to the technology


- Vikram Dalal A professor at ISU that is interested in the 1. viability of CdSe as a method of boosting the efficiency of Si cells.
- **First Solar** A solar cell manufacturer that is also interested in 2. CdSe, and would benefit from more detailed fabrication research.

<u>Design</u>	<u>Approach</u>		
	ITO		
a-Si			
	CdS	е	
CdS			
ZnO			
p⁺-Si			
	n-S		
	n⁺-S		
]	Meta		
Figure	3. Cadmium Selen	ide Fabrication	
. Clean Vafer	2. Remove Oxide	3. Deposit ZnO	4. Depos

available at the Microelectronics Research Center (MRC).

Standards: Many standards will apply to solar cell technology including but not limited to:

- **IEEE 1547**: "Standard for Interconnection and Interoperability of **Distributed Energy**
- **IEEE 1562-2021**: "Recommended Practice for Sizing Stand-Alone 2. Photovoltaic Systems"
- **IEEE P2778**: "Guide for Solar Power Plant Grounding for 3. Personnel Protection"
- **IEEE 1526-2020**: "Recommended Practice for Testing the 4. Performance of Stand-Alone
- OSHA 1910.1027: "Toxic and Hazardous Substances: Cadmium" 5.
- **OSHA 1926.55**: "Safety and Health Regulations for Construction" 6.

